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Abstract

This paper provides a combinatorial perspective on innovation in pharmaceuticals by modeling clinical

trials as a research network which resembles a hypergraph with supra-dyadic connections. Third phase

interventionist clinical trials are interpreted as hyperedges and molecules tested as a part of these trials

as nodes in the network. Our proxy for radical innovation uses the concept of structural holes which is

measured using variance of eigenvector centrality of molecules, thereby extending the standard measure

of structural holes in dyadic connections to hypergraphs. Using eigenvector centrality of trials and

this measure of structural holes, a four-way classification of clinical trials is obtained: Star Performers,

Incremental Innovation, Black Sheep and Low Hanging Fruits. Depending on the relative abundance

of these categories, twin characteristics of “strength” and “resilience” of the network are defined to

discuss quality of innovation. This methodology is demonstrated for clinical trials in diabetes using data

over a five year period from one of the largest worldwide registries for clinical trials (ClinicalTrials.gov).

Despite the fact that most clinical trials are privately funded, there is no evidence of success bias in trial

molecule composition nor is there a bias against novelty. The network exhibits innovative “strength” but

not “resilience”. While a disease-by-disease approach is necessary to implement this methodology, we

feel differential incentives in drug research at the clinical trial stage for different diseases validates our

approach towards understanding novelty and incentives in innovation for pharma.

Keywords: innovation in pharma; structural holes; hypergraphs; clinical trial network; eigenvector

centrality

JEL Classification Codes: D85, O31, L65
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1 Introduction

Existing literature on innovation has predominantly used patents and R&D expenditure as the yardstick

for measuring innovation (Papageorgiadis and Sharma (2016), Allred and Park (2007), Tyagi et al. (2014)),

Mansfield et al. (1981), Mansfield (1986)). While the former is a leading output-based measure, R&D expen-

ditures are a proxy for input based measures. Other measures such as total innovation expenditures, sales of

innovative products, innovation counts, patent citations (Narin and Olivastro (1988)), patent claims (Tong

and Frame (1994)), patent families (Dernis and Khan (2004)) and renewal fees (Pakes et al. (1989)) have

recently been used as contenders to patents and R&D expenditure as they improve upon some dimensions

of the earlier measures as far as innovation is concerned (Kleinknecht (1996), Archibugi and Planta (1996)).

Measures based on patents additionally suffer from an inherent survival bias because only success in

the first stage of research and development (particularly the pre-clinical stage in pharmaceuticals) leads

to a patent1(Grabowski (2002)). Many failures which never resulted in a patent application, crucial to

the process of learning cannot possibly be accounted for within this system. Scotchmer (1991) points out

that looking at patents in isolation misses the larger picture. Pharmaceutical patents have to account for

differential value of innovation, ranging from a breakthrough discovery to marginal contributions to existing

knowledge in drug research (Harhoff et al. (1999), Gambardella et al. (2017)). Since patent counts do

not differentiate between patents in terms of their inherent value, indices based on patent citations are a

potential improvement in evaluating the value of patents (Trajtenberg (1990)). One issue with patent counts

is that it captures quantity (just as other measures such as number of drugs marketed) rather than quality

of innovation (Cohen (2005)). More substantially, as a “measure of knowledge flows”, patent citations are

deeply flawed. For instance, (Alccer and Gittelman (2006)) finds that approximately 63 per cent of the final

citations accompanying an average patent (across a pool of 442,839 granted patents between January 2001

and August 2003 with the USPTO) are externally added by patent examiners and are not generated by the

innovator filing for patent.

In general, the process of research and development in pharmaceuticals can be decomposed in two stages

(Henderson and Cockburn (1996)). The first comprises the process of drug discovery wherein a new molecule

is found in the laboratory and the second comprises of clinically testing the new molecule for both safety and

efficacy. In order to locate the space of learning through which innovation happens in pharmaceuticals, we

adopt a “combinatorial novelty in science” approach (Wang et al. (2017), Arthur (2009), Nelson and Sidney

(1982)) that is similar to the literature on patent citations. However, we work directly with data on molecule

combinations in clinical trials, rather than indirect citations. Our perspective is that the manner in which

different molecules are combined in clinical trials are revelatory of both the learning process of sponsors as

1https://www.biology.iupui.edu/biocourses/Biol540/4pipeline09Full.html
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well as the differential quality in terms of novelty of research in the process of drug discovery.

Current standards in drug launch ensure that a new drug discovery cannot happen without the second

stage. The results of the clinical trials are verified by regulatory authorities, with successful trials leading to

the marketing of new drugs or more efficient methods of drug delivery. Failed trials result often in research

papers, that feed into the first stage. Additionally, this industry requires considerable committed sunk

expenditure primarily in clinical trials, prior to the actual production of drug formulations (Cohen (2005),

Cockburn and Henderson (2001), Mestre-Ferrandiz et al. (2012)). Over time, biotechnology collaborating

with pharmaceutical research (Stuart et al. (2007), Danzon et al. (2005), Nicholson et al. (2002)) the frontiers

of innovation have expanded to include many new drug formulations, such as biologics in cancer research,

where live culture is combined with chemical compounds to increase the efficiency of the intervention. The

importance of clinical trial testing to understand drug efficacy on various disease conditions. For instance,

Cohen (2005) shows that between 1976 and 2002, the expenditure on non-clinical/ pre-clinical research has

sharply declined from around 48 per cent of total annual R&D expenditure to approximately 28 per cent

using data from annual PhRMA surveys in the United States.

The combinatorial perspective on novelty of innovation is mostly limited to citation and bibliometric

analysis in the first stage of pre-clinical trial R&D (Klavans and Boyack (2013), Henderson and Cockburn

(1996), Powell et al. (1996)). Note our non-standard usage of research network: we fix a disease and explore

the research network as represented by third stage clinical trials using various molecule combinations by

sponsors. Our focus is not on using the person-specific exploration of research networks, as in Burt (2004) or

in the pre-clinical trial stage research network (Powell et al. (1996)), or in papers exploring patent citations

(Alccer and Gittelman (2006), Trajtenberg (1990)). These papers explore the pattern of interactions between

pairs of agents in the research network, either through citations or actual collaborative contacts. As citations

themselves do not reveal the exact learning process of the innovator (additions to knowledge from ubiquitous

sources such as informative blogs mostly do not find a space of citations and bibliography and cannot be

captured), we infer the learning process of the pharmaceutical companies and public organizations that

sponsor clinical trials from their choice of combination of molecules in clinical trials. To the best of our

knowledge, there is no other attempt similar to ours in the literature on innovation in pharmaceuticals.

In order to model the clinical trial process as a research network, we limit ourselves to third stage trials

where two or more molecules are combined and tested on a particular population of participants2. The

clinical trials themselves are interpreted as hyperedges and molecules are the nodes in the network.

We discuss the issue of novelty in research (to differentiate between path-breaking discoveries (Schum-

peter (1939)) as opposed to incremental innovation) using the concept of “structural holes”. Lichtenberg

2A number of trials explore some aspects of a particular disease or investigate the side-effects of one single molecule itself.

Our methodology does not apply to these trials.
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(1998) provides an exploration of only Schumpetarian discoveries in pharma (used interchangeably with

pharmaceuticals). The concept of structural holes has emanated from the sociology literature on the poten-

tial for dissimilar connections to exchange information that they did not possess apriori leading to innovation

in networks of human agents (Burt (2004)). Economic analysis of innovation has recently used this concept

(Raider (1998), Ahuja (2000), Foster et al. (2015), Chen et al. (2009), Rzhetsky et al. (2015), Shi et al.

(2015)). As “structural holes” represent missing or brokerage connections, they are ideal candidates for

modeling path-breaking research ideas in a clinical trial research network. The presence of both dyadic and

supra-dyadic combinations (as trials include two or more than two molecules) necessitate an application of

hypergraphs. These are generalized graphs in which there is no restriction on the size of the edges. Our

paper presents an opportunity to demonstrate the workings of hypergraphs, which are present in many social

contexts but have not been explored much in the literature3.

As we use hypergraphs, the measure using constraints to capture structural holes (Burt (2004)) has to

be modified. In the research network of clinical trials, we work with the concept of eigenvector centrality

(evc henceforth) of the trials and molecules, using the two-mode data construct of Bonacich et al. (2004) in

the context of hypergraphs. This measure of centrality is appropriate in our context, as a molecule becomes

“central” in the network by its association with more “central” connections (clinical trials). The more

“central” the molecule, researchers are more commonly aware of its properties and lower is the possibility

that it can contribute to path-breaking discoveries in pharma research, unless combined with some “less

central” molecules in some other clinical trials. Neither degree nor betweenness nor other common measures

of centrality serve the purpose of highlighting the quality of information that a molecule conveys in the overall

context of pharma research through its location in the hyperedges. Additionally, as a measure of innovation

it has some desirable properties: first, it captures learning without a survival bias towards successes; second,

it does not interact with the incentives for innovation; third, this measure is replicable over time; and fourth,

it reflects the differential learning costs which exist across diseases. Though most of the literature on drug

research using patent data clubs across all diseases, it attracts criticism that incentives for research differ

across diseases. For instance, the incentives for conducting clinical trials for relatively common medical

conditions such as diabetes type II is very unlikely compared to those for a rare medical condition like Rett’s

Syndrome.

Variance of evc of molecules (nodes) distinguish between structural holes (or uncommon molecule com-

binations) and pedestrian combinations in clinical trials (hyperedges): the larger the variance of evc for

molecules, the higher is the potential for spectacular discoveries through clinical trial research. Hence, more

uncommon the combination (a notion which finds resonance in Fleming (2001) where “familiar combina-

tions” of technology subclasses in patent classification are marked as less novel leading to higher average

3One exception is Bonacich et al. (2004) in the context of historical networks.
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patent citations with lower variance in citations compared to less novel ones), as reflected by a high variance

of evc of molecule eigenvector centrality, the higher is its potential to be a structural hole in the network.

Further, the location of new information is unique to the clinical trial or the hyperedge and is not present

in the entire network. Every new and costly clinical trial contains within it the possibility of path-breaking

research and we posit that for supra-dyadic connections which use clinical trial data, the location of struc-

tural holes should be studied within each non-trivial drug combination, i.e. the hyperedge of the clinical

trial hypergraph, which is not discussed in the research network literature. For instance, Powell et al. (1996)

contends that the entire research network is a locus for innovation, rather than specific sub-parts of the

network.

In our paper, trials which use obvious combinations become more “common” with high trial evc, whereas

unique trials with less common combinations have a lower trial evc. The median of both the variance of

molecule and trial evc are used as a cut-off to classify “high” and “low” centrality score, leading to a four-way

classification of trials, which we creatively label “Star Performers” (high trial as well as variance of molecule

eigenvector centralities), “Black Sheep” (low trial but high variance of evc for molecules), “incremental

innovation” (low trial and variance of molecule evc) and “low-hanging-fruit” (high trial but low variance

of evc for molecules). The quality of popular trials in terms of novelty of drug combinations is read off

from the “strength” of the network, whereas “resilience” applies to novelty in uncommon trials. This

classification has the advantage of treating structural holes not as a homogeneous entity, as strength and

resilience differentiate between the brokerage connections across popular and uncommon trials. As novelty is

more likely in uncommon trials leading to resilient networks, we ascribe strength to networks where popular

trials are ubiquitously marked by novel structural hole molecule combinations. To this end, our research adds

to the literature questioning the extent to which structural holes yield better outcomes for agents located

at these brokerage connections (Ahuja (2000)). At the same time, we do not ignore incremental research

which are a part of small and sometimes failed clinical trials, which avoids the survival bias afflicting patent

measures. Our treatment of clinical trials as a research network for learning and for potential drug discoveries

allows us to study both the trivial as well as the novel in a unified framework, which papers like Cohen (2005)

argue in favor of to understand the innovative process in pharma.

We demonstrate the application of the hypergraph model and research network classification to third stage

interventionist clinical trial data for diabetes type II, using data from the largest clinical trial registry for all

diseases (ClinicalTrials.gov) for a time period of five years. At present, diabetes has an alarming incidence

worldwide. International Diabetes Federation reports that in 2017, 60 per cent of the adult population

between 20-79 years are diabetic from ten countries including China, India and the US, accounting for 69 per

cent of the global healthcare expenditures on diabetes4. Unlike the citation-based combinatorial exploration

4Refer to http://diabetesatlas.org/resources/2017-atlas.html
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result on delays in recognition for novel research (Wang et al. (2017)), we find no evidence of differential rates

of repetitions of novel structural hole combinations of molecules compared to common non-structural hole

combinations within or across years. It is mostly the same sponsor who repeats such combinations, be it for

structural holes or non-structural holes. As these are big pharmaceutical majors, our intuition is that there

is a race in research for novelty in modern clinical trial research for diabetes type II so that sponsoring firms

do not discriminate against novel (and therefore risky) combinations. In corroboration with this result, we

also find no evidence of obvious biases in our data in favor of low hanging fruits in clinical trial research for

diabetes type II (through obvious combinations which are more likely to yield successful trials and therefore,

marketable drugs). In terms of quality of the research network of clinical trials for this disease, while the

criterion of strength is fulfilled, resilience is absent in the network. This lends further support to our intuition

that big pharma majors, engaged in stiff competition to discover the next big success, do not shy away from

undertaking the risk of combining unusual molecules in sponsoring large popular trials. Low resilience of the

network in fact indicates that the less popular trials that fall short of adequate numbers of structural holes,

indicating less risk-taking and lower potential for breakthrough innovation.

The structure of this paper is as follows: section 2 presents some issues with the definition of innovation in

pharma, the difficulties in linking novelty with quality of innovation and a brief description of interventionist

clinical trials, section 3 models clinical trials as a research network using hypergraphs and examines measures

based on this network which are valid markers for innovation in pharma, section 4 presents our empirical

analysis with an application of our methodology for diabetes clinical trials from 2010 to 2014. Section 5

concludes.

2 Clinical Trials and Pharmaceutical Innovation

2.1 Definition of Innovation in Pharma

We start with the onerous task of defining innovation relevant for the pharmaceutical industry. We define

innovation in pharma broadly to include all processes that have the potential for drug discovery. In the

particular, our usage of this definition is applied to clinical trials which are a part of the process of drug

discovery. The closest to our definition is that of Wardell and Diraddo (1980) which acknowledges the

difficulty inherent in defining pharmaceutical innovation, they nonetheless define it as “any development

that is intended to produce a therapeutic advance”. Narrower definitions such as Bouet (2015), Morgan

and Lopert (2008) and Hollis (2004) bind innovation to the space of pharmaceutical products which retains

an inherent survival bias because successful innovations leading to product development. We include both

successful and failed clinical trials to emphasize the point that any incremental step towards drug discovery

has to be seen in the larger perspective wherein failed attempts only lead to further innovation in an attempt

6



to obtain a successful outcome in the future.

2.2 Novelty and Quality

Wang et al. (2017) mentions that citation-based measures of novelty suffer from potential unobserved and

uncontrolled heterogeneity in published paper quality. As we work with the institution of clinical trials, we

rely on objective parameters such as trial size and other technical requirements which have been standardized

worldwide, which apply uniformly to trials with novel molecule combinations and those with common ones.

There is no variation in terms of quality standards for clinical trials, though their sizes, funding and molecule

combinations may vary. This is discussed in detail below.

2.3 Brief Exposition on Clinical Trials

Pharmaceutical research is no longer conducted in a adhoc manner and has clear pre-defined objectives, which

are essentially classified in two steps (Henderson and Cockburn (1996)). The first step involves investigation

into molecules and the second step is the drug development process itself, which includes clinical trials. These

trials are unique to the pharma industry and is one of the largest sources of risks in drug discovery. For

one, success in the trial is not guaranteed (though tampering with the probability of success using common

molecule combinations is not ruled out: we test for this in the case of diabetes). Second, clinical trials

decrease the patent term granted to molecules since a substantial period of time is invested in the conduct

of clinical trials and the required marketing approvals (Budish et al. (2015)).

The USFDA defines clinical trials as a way of testing “potential treatments on human volunteers” to

establish whether these treatments can be used by the population at large. Treatments here are defined as

a drug (technically, molecules), medical devices or a biologics. However, potential treatments must be first

tested for safety on animals before testing on human volunteers. Once safety on animals is proven than

only they are taken to clinical trials. The USFDA also takes care that participants in clinical trials are not

subject to unethical treatment by researchers by ensuring the participants are fully informed about the risks

involved. The standard of “informed consent” goes beyond written consent so that potential participants

can clarify their doubts about the process.

Clinical trials are conducted in different phases at hospitals and research centers with each phase being

more stringent than the previous in terms of rigour. Pocock (1983) classifies clinical trials into four phases

which corresponds to the USFDA’s classification. To summarise, phase 1 trials rule out any toxicity, phase

2 trials are a preliminary clinical investigation for treatment effects, phase 3 trials are a full scale evaluation

of treatment and phase 4 trials involve post marketing surveillance. By the stage 3, enrollment of subjects

is completed and the trial is set for yielding results. Description of the clinical trial mentions the molecules
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which are a part of the clinical trial. Most commonly, the sponsor of the clinical trial (if it happens to

be a large pharmaceutical firm) conducts the trial on its own, hiring agents as per the directives of the

clinical trial. The sponsor typically puts up one or more of its own patented formulation for testing in the

interventionist trial. Nonetheless, there are more complex ways in which the link between patented drugs

and clinical trials are formed. The sponsor also includes patented formulations of other firms as part of the

clinical trial as, for instance, comparators. This is most evident for diabetes, which affects multiple organs

and a cocktail of drugs is prescribed simultaneously to address the simultaneous and multiple affectations.

This fact also necessitates a network structure exploration to understand the locus of innovation, rather than

a partial by-firm profit maximizing approach to understand the link between patents and innovation. The

trials themselves have multiple objectives: checking for reaction to the injectable form of the drug, evaluating

differential responses to a combination of drugs for a particular disease condition etc.

Since the literature on clinical trials tends to be biased towards successful and promising trials (Friedman

et al. (1998)), a move towards registering all clinical trials was made in the United States in 1997 5. An

advantage of registering trials is that unnecessary expense in duplicating unsuccessful trials can be avoided.

The International Committee of Medical Journal Editors (ICMJE) mandates that it is “an ethical obligation

to share data generated by interventional clinical trials” because participants have undertaken some risk in

the conduct of the trial (Taichman et al. (2016)) giving an impetus to the reporting of both successful and

failed clinical trials.

3 Methodology: Modeling Clinical Trials as a Research Network

We model the research network as a finite collection of clinical trials for a particular disease in a given year

k using hypergraphs, where such a structure defined as:

H = {V,E = (ei)i∈I} (1)

where V = collection of nodes or vertices

E = set of non-empty collection of edges, ei of V

I = the finite set of indices

The simple graph is nothing but a degenerate hypergraph which only considers two vertices at a time. A

simple graph is defined as:

G = (V,E) (2)

5India, according to the International Diabetes Federation Report (2015) is only second to China in terms of the number of

diabetes patients, has launched its own clinical trial registry in 2007. Registration has become compulsory from 2009 leading

to 6000 trials till July, 2015.
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where V is a set of non-empty vertices or nodes and E is the set of edges, where each edge contains at most

two nodes. Hypergraphs, on the other hand, can account for multiple nodes which are elements of the same

hyperedge.

While a number of economic interactions involving networks involve supra-dyadic connections, the only

application is in Bonacich et al. (2004). We define H to be a research network where V is a finite collection

of molecules which are elements of interventionist clinical trials E for a particular disease in a given year.

While E might include a single, two or more molecules in various combinations, we consider only those trials

which contain at least two or more molecules, as we are interested in the information embedded in these

combinations. This is depicted in Figure 16, which represents the hypergraph for diabetes type II clinical

trials in phase 3 for the year 2014. The numbered nodes are molecules which were included in a total of 24

trials. The exact molecule names for the number codes shown in Figure 1 is detailed in Appendix A (Table

7). Note clinical trials as hyperedges in the research network, sometimes include more than two molecules

(for instance, nodes 50, 14 and 21 belong to a single clinical trial). We assume that the sponsor of the

30

37
59

28

13

59 18 58

47

49
50

4 40

64
65

36
27

55 10

29

32
48

14
21

26
2

31

33

Figure 1: Diabetes Clinical Trial-Molecule Network for 2014

clinical trial exercises choice about novelty or lack thereof through combinations of molecules in these trials.

Measurement of novelty uses a metric based on evc (eigenvector centrality, as explained in the introduction).

Evc is based on the notion that a node becomes central in the network if it is part of a more central hyperedge

and an hyperedge is more central is it contains more central nodes. Clinical trials acquire centrality by testing

common (popular) molecules and common (popular) molecules are tested by central clinical trials. However,

more central is the node (molecule), more information exists about its properties and therefore, if a trial

with common/central nodes is considered one which is testing obvious combinations, with low potential for

6For the sake of clarity, two clinical trials were omitted from Figure 1 and two trials with the same composition (26, 21, 14,

50, 59, and 30, 37, 59) sponsored by Merck Sharp together with Pfizer and Sanofi are repeated in 2014.
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novelty. For instance, molecule metformin (coded 59 in figure 1) has either the highest or the second highest

evc molecule centrality in our network. It was discovered as early as 1922 and has been a part of diabetes

medication since 1957. Trials which only include molecules like metformin experiment with information that

has been part of medical literature for a sufficiently long period of time. Evc centrality for these trials are

therefore relatively high compared to trials experimenting with less common molecules.

Working directly with hypergraphs is cumbersome (Newman (2010)). We represent the hypergraph as a

bipartite/two-mode network (Bonacich et al. (2004)). The two modes of the data for our network are trials

and molecules included in the trials. The incidence matrix Wij reveals whether molecule i is part of trial

j. We appeal to the Perron-Frobenius Theorem which states that a symmetric n × n matrix A which has

only positive entries is guaranteed to have a unique maximum eigenvalue to ensure the existence of a unique

eigenvalue of the incidence matrix. The evc scores for nodes and trials are read off from the normalized

eigenvector corresponding to the maximum eigenvalue, where we use the column total of the eigenvector to

ensure that evc scores are less than one. Note that rows of the incidence matrix represent trials and columns

represent molecules. The manner of calculation requires the simultaneous solution of the following equations

(Busseniers (2014), Bonacich et al. (2004)):

c1vi =
∑
j

Wijfj (3)

c2fj =
∑
i

Wijvi (4)

Using the median value of evc for trials and molecules as the cut-off, we classify them into “high” (evc

scores higher than or equal to the median) and “low” (evc scores lower than the median).

Hypothesis 1. If there exists a trial with evc fj with value higher than the median evc for all trials in that

year, then there is at least one molecule that is part of that tial which has evc vi that is also higher than the

median evc for all molecules. Similarly, if a molecule has “high” vi, then it is part of a trial with “high” fj.

In order to measure novelty using structural holes, we modify the methodology of Burt (2004) to apply to

hypergraphs. We use the variance of evc for molecules included in a clinical trial for identifying these points

of “gaps in information flows”, as relatively rare combinations of molecules contain information that is not

very commonly held in the research community already. Using the median variance of evc of molecules as

the cut-off, all trials with variance of evc of molecules higher than or equal to that the median are labeled

“high” and those below the median as “low”. High variance of evc of molecules imply that molecules with

both high and low centrality scores have been combined in the trial, which is indicative of experiments with

common/popular molecules as well as less common ones. These combinations indicate the presence of a

‘structural hole’ in the clinical trial research network, as our second hypothesis posits.
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Definition 1. Structural Hole:

For any trial tj, if the variance in eigenvector molecule centrality is classified to be ‘high’, then there exists a

structural hole connection and hence, innovative potential. Hence, the presence of a structural hole connect

in a trial signifies novelty in research objectives sought to be fulfilled by the trial.

We can now use a two-way classification of the research network, along the dimensions of evc of trials

and variance of evc of molecules in the following way:

• Star Performers: Trials with high eigenvector centrality and high variance of eigenvector molecule

centrality

• Black Sheep: Trials with low eigenvector centrality and high variance of eigenvector molecule cen-

trality

• Incremental Innovation: Trials with low eigenvector centrality and low variance of eigenvector

molecule centrality

• Low Hanging Fruits: Trials with high eigenvector centrality and low variance of eigenvector molecule

centrality

Using this classification, we can characterize the clinical trial research network along the dimensions of

“strength” and “resilience” as discussed in the following hypothesis.

Hypothesis 2. • A clinical trial network is strong if “Star Perfomers” are higher in number than “Low

Hanging Fruit” trials consistently for at least five years.

• A clinical trial network is resilient if “Black Sheep” trials is greater than “Incremental Innovation”

trials consistently for at least five years.

To maximize innovative potential, a research network should ideally satisfy both characteristics of

“strength” as well as “resilience” for a sufficiently long period of time. Given the dynamics of new research,

we have fixed this term as five years for our definition. The network is strong in its research innovativeness

if a significant number of popular trials are characterized by innovative potential (measured by structural

holes). This is of great importance as one would expect less popular trials to experiment with uncommon

molecule combinations (and therefore have more structural holes). As long as the trials central to the network

have the potential for innovation, we believe the criterion of strength is met. On the other hand, the less

popular trials, if a majority of them have innovative potential/structural holes, then the research network is

marked by potential for Schumpetarian innovation on the margin, leading to high resilience of the network.

These properties are desirable because all kinds of trials whether they include commonly known formulations
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or whether they experiment with less-known prescriptions, have an element of new information (potential

structural hole) and hence, a possibility that results of the trial will not be a marginal extension of existing

information.

4 Application to Third Phase Interventionist Clinical Trials in

Diabetes Type II

4.1 Data Description

We have collected the data on clinical trials from ClinicalTrials.gov7, which is maintained by the U.S.

National Library of Medicine and is the world’s largest clinical trials registry8. This is a public registry

of public as well as privately funded clinical trials from 2008 onward. It comprehensively includes trials

conducted at multiple locations worldwide. Studies like B.R. et al. (2013), Inrig et al. (2014) and Pasquali

et al. (2012) have used the database to explore results from oncology, nephrology and pediatric clinical

trials. A shortcoming of the this database is that the methodological approach used in analysing the results

of clinical trials is not consistent across all clinical trials (Califf et al. (2012)). Further, the reliability of

the database depends upon the truthful revelation of the results by researchers conducting the clinical trials

(Zarin et al. (2011)) and timely updation of the database. However, Jeong et al. (2017) claim that this

database is the most accessible and the largest registry of clinical trials worldwide and use this database to

study the characteristics of clinical trials so as to explain the pattern of globalization of clinical trials from

2011 to 2013. For a randomly selected sample of clinical trials, there exists an additional problem of bias in

publication of results (Ross et al. (2009), Saito and Gill (2014)). This fact underlines the importance of this

database because even if there is no reporting of results in a publication, there is a record of the trial having

been conducted in the registry.

These clinical trials conducted are categorized as interventionist and observational with interventionist

trials being conducted to assess the effect of a particular intervention assigned to participants in the trial.

While observational studies encompass an account of various factors that may affect the result without

administering the intervention to participants. We use data on diabetes type II interventionist clinical trials,

which have completed the third phase of testing. A completion of a trial is described as the trial that is no

longer treating participants and hence the results can be evaluated. Since for the years 2015 and 2016 there

were only 11 and 4 completed diabetes type II clinical trials respectively, we have restricted the data for the

five year period from 2010 to 2014. This time period is sufficient to capture the changing landscape of clinical

7https://clinicaltrials.gov/ct2/home
8Note that http://www.circare.org/registries.htm, which provides a comprehensive list of all public registries declares this

database to be the most comprehensive one.
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Table 1 Description of Diabetes Type II Clinical Trials with Third Phase Completed

Year Number of

Trials

Percentage

of Dyadic

Trials

Percentage

of Supra-

dyadic

Trials

Enrollment size of

the largest trial

(Sponsor)

Enrollment size of

the smallest trial

(Sponsor)

Average size

of enrollment

2010 40 15.00 10.00 1549(Boehringer

Ingelheim and Eli

Lilly)

16(Radboud Uni-

versity)

555

2011 26 11.25 5.00 2705(Boehringer

Ingelheim and Eli

Lilly)

26(Astrazeneca) 678

2012 38 14.37 9.37 1413(Boehringer

Ingelheim and Eli

Lilly)

32(AstraZeneca

and Bristol-Myers

Squibb)

467

2013 32 14.37 5.64 7637(Novo Nordisk

A/S)

7(Hoffmann-La

Roche)

730

2014 24 8.14 6.87 1291(Merck Sharp

and Dohme Corp.

and Pfizer)

10(Medical Univer-

sity of Vienna)

525

Source: Authors’ own calculations based on data from ClinicalTrials.gov

trials. Trials in phase 1 and 2 often get terminated due to lack of participants and financing issues and our

focus is solely on the innovative potential of these trials, we restrict our dataset to phase 3 trials. The total

number of completed trials in our dataset are 160. Since research and development budgets are allocated

annually, we first create year wise cohorts containing studies with strictly greater than one molecule. Table 19

gives a year-wise description of the phase three trials conducted between 2010-14. Though the composition

of molecules for some of the trials may be same, the trials themselves are different. We discuss an example

from our dataset in a later section.

A regularity check, following Bonacich et al. (1998), that was conducted on all year-wise cohorts was

to check whether the size of the trial is correlated with trial evc scores. We find no evidence of consistent

pattern in these correlations, as they range from a low (0.10) to high (0.84) in our data. Since, the corre-

lation coefficients are not consistently high, we have not taken size into consideration when calculating our

eigenvector centrality scores. In Table 2, we draw a parallel between the eigenvector trial centrality scores

9All tables in this section are authors’ own calculations from ClinicalTrials.gov data for respective years.
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Table 2 Year-wise Lowest and Highest Eigenvector Centrality Trials with Number of Diabetes Drugs Mar-

keted by Sponsor

Year ClinicalTrials.gov

Identifier- NCT

Number

Evc Sponsor (type; diabetes drugs portfolio) Trial Size by

Enrollment

2010
NCT01000688 0.0016 Radboud University(Public; 0) 16

NCT01106690 0.0629 Janssen Research LLC(Private; 6)) 344

2011
NCT01301833 0.0014 Mitsubishi Tanabe(Private; 1) 462

NCT01388361 0.1215 Novo Nordisk A/S(Private; 4) 413

2012

NCT01513590 0.0007 Novo Nordisk A/S(Private; 4) 394

NCT01680341 0.0007 Novo Nordisk A/S(Private; 4) 272

NCT01590771 0.0580 Merck Sharp(Private; 3) 498

2013
NCT01734785 0.0000 Boehringer and Eli Lilly(Private; 2) 607

NCT01755156 0.0976 Merck Sharp(Private; 3) 402

2014

NCT02068443 0.0000 Takeda(Private; 1) 374

NCT02131272 0.0000 Novo Nordisk A/S(Private; 4) 42

NCT02220907 0.0000 Mitsubishi Tanabe Pharma(Private; 1) 153

NCT02099110 0.1000 Merck Sharp and Pfizer(Private; 3) 1291

NCT02036515 0.1000 Merck Sharp and Pfizer(Private; 3) 464

Source: Authors’ own calculations based on data from ClinicalTrials.gov

with the number of drugs marketed by the sponsor before the start of the trial in consideration. We have

taken the trials with the largest and smallest centrality score along with some intermediate trials. There

is no obvious correlation between the number of drugs discovered and the centrality scores, reducing the

possibility of a survival bias in our clinical trial data.

We find that Hypothesis 1 holds for our data10. Table 8 in Appendix A, shows the results for year 2014

(a research network of 24 trials testing with 29 unique molecules in various combinations) where median

values for trial and molecule evc are 0.042 and 0.014 respectively. Trials and molecules with evc equal to or

greater than these values are labeled “high” (or “low” otherwise). Consider trial 1, it has ‘high’ trial evc

and consists of molecules 30, 37 and 59, all of which are classified ‘high’ evc. On the other hand, trial 8 has

‘low’ trial evc and it comprises of molecules 27, 28 and 36 of which 27 and 36 have ‘low’ evc whereas 28 has

‘high’ evc.

In Table 4, we identify structural holes in the data for 2014 using the median value of 0.004 for variance

10We use MATLAB software for all our calculations of centrality scores.
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of evc for molecules. All trials with higher or equal values for variance of evc of molecules are classified as

structural holes. As mentioned earlier, this methodology of identifying a structural hole within the hyperedge

extends the methodology of Burt (2004), which uses a network constraint measure to quantify these bridge

connections in the network. Note that the latter methodology only applies for dyadic connections, whereas

our measure works for supra-dyadic links11.

4.2 Testing for Success Bias in Trials

As mentioned earlier, we do not expect to see quality biases in our data. However, a bias towards successful

trials (by choosing combinations of molecules) cannot be ruled out. For clinical trials to serve as a valid

platform to measure learning and innovation in research, there must be an element of risk-taking through

unusual molecule combinations, so that patterns of combinations biased in favor of success of the trial can be

ruled out. Given a clinical trial research network in year t, a success-biased sponsor will include combinations

in for trial j in the trial network H = {V,E} in order to maximize the probability of success:

Max Probabilityj(success|j ∈ E and H = {V,E}) such that
∑
j

Cj(t) ≤ B(t) (5)

where
∑

j Cj(t) is total expenditure on clinical trials driven by trial size (Mestre-Ferrandiz et al. (2012))

and B(t) is the total annual R&D budget on clinical trials. This kind of choice formulation for the sponsor

would imply strategic composition of elements in the trial, with an objective to pick winners.

We assume that the appropriate counterfactual to the strategic model is one of naive behavior that

maximizes learning potential offered by combination of molecules in trial j in the trial research network.

Max Lj(t;H = {V,E}) such that
∑
j

Cj(t) ≤ B(t) (6)

where the learning function L is represented by structural holes; i.e. Lj(t;H = {V,E}) = varj(evc(V); j ∈

H, t). As structural holes provide the potential for gaps in current knowledge to be filled in, they proxy for

the learning potential in the network. Note that 97.5 per cent of our data from 2010-14 on third phase clinical

trials in diabetes II are privately funded by pharma majors and likely to suffer from a larger success bias than

publicly funded trials. Rejection of the success bias in these trials should be sufficient proof that in general

clinical trial networks are appropriate platforms for inferring learning and innovation in pharmaceuticals.

We model the probability of success in the third phase clinical trial through a multinomial logit estimation.

The reason for this specification is that clinical trials indicate a gradation/natural categorization of success

rather than a binary success or failure kind of outcome. Hence, instead of directly modeling the probability

of success, we first create three distinct categories of success for any clinical trial. The first category contains

11Newman (2010) notes a significant loss of information about the entire hypergraph if we forcefully restrict it to unimodal

data format where the usual network constraint method for identifying structural holes is applicable.
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Table 3 Year-wise Description of Success Categories

Success Category 2010 2011 2012 2013 2014 Total (Per cent out of 160)

1 19 9 13 11 13 65 (41)

2 16 8 19 10 5 58 (36)

3 5 9 6 11 6 37 (23)

Total 40 26 38 32 24 160

Source: Authors’ own calculations

trials that have led to drug discovery indicating a very high probability of success. The second category

contains successful trials which cannot be mapped uniquely to a new drug discovery program. Trials included

in this category typically are associated with an already discovered drug and the test is conducted on a new

population or against a new comparator. The last category comprises of both failed as well as inconclusive

results. Table 3 shows that success categories 1 and 2 are almost similar in number over the five year period,

but success category 3 is lower. While there might a potential bias against reporting failed results through

public registries, we hope to correct for it by including trials with inconclusive results in this category.

With categories of success as the dependent variable, our independent variables are trial size (positively

correlated with funding Mestre-Ferrandiz et al. (2012)) and controls for experience of the sponsor in conduct-

ing diabetes research prior to the start date of the particular clinical trial and importance of the trial in the

research network. Experience is measured by the number of diabetes drugs that the sponsor has marketed

prior to the trial. Evc scores for trials is our research-network based measure to capture trial importance.

Additional controls for year (dummy variable) and trial type (dummy variable for whether a trial is a part

of a large investigational series12) are included.

Using the third success category as the baseline, we find that trial size (measured by enrollment) is

significant at the 5 percent level, for both success categories and the dummy representing series which is

significant at the 1 percent level for the first category, all other variables are insignificant, discussed in Table

9 in Appendix B. Thr results do not change with other specifications such as logarithm of enrollment as the

independent variable.

We test for the IIA (Independence of Irrelevant Alternatives) assumption using the Hausman test and

find that it is satisfied since none of the categories of our dependent variable are significant (see Appendix

B Table 10 for details). Therefore, the odds are independent of other alternatives. To check whether an

independent variable has any affect on the dependent variable, we perform the likelihood ratio test and find

12Sponsors in their quest for drug discovery have often conducted trials which are part of a large investigational series exploring

various aspects of the new drug/molecule in consideration before filing a new drug application. For diabetes some examples

include the BEGIN series of trials conducted by Novo Nordisk, AWARD series by Eli Lilly.
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that experience and evc of trials do not significantly effect the success of a clinical trial (see Appendix B

Table 11 for details). Our estimation results summarized in Appendix B lend empirical support in favour

of the naive counterfactual. We now comment on the quality of innovation and learning that we find in our

data.

4.3 Delays in Replicating Novelty or Race to Stay Ahead?

Science policy based on bibliometric techniques to discover novelty in research is likely to suffer from problems

of biases against novel research (Wang et al. (2017), Hicks et al. (2015), Butler (2003)). This arises from

delays in recognition of research with novel combinations of citations in the empirical literature investigating

these combinations using the Web of Science database. However, our clinical trials data on diabetes II over

2010-14 reveals the opposite: a probable race to stay ahead of the innovation curve by trial sponsors. Out

of a total of 160 clinical trials from 2010-14, there exist 98 structural holes in our dataset. Within a given

year or across years, we find the same pattern of sponsorship for structural hole as well as non-structural

hole connections with the same molecule composition in Table 4 panels A and B respectively. For structural

hole trials that repeat (in terms of molecule composition) within the same year, we find that they are funded

by the same sponsor with the exception of one repeated trial in the year 2013 which has same composition

(molecule codes 16 and 50) but different sponsors (Astrazeneca and Intarcia Therapeutics). Evidence of

delay for novel research would have shown up in our data as significantly lower repeats of structural hole

trials within and across years relative to non-structural holes. There is no significant difference in within and

across year transmission of information about molecule composition between these two classes of trials. That

large trials (proxied by size of enrollment) have a potential for novelty (structural holes) is corroborated by

comparing the average enrollment size in trials with structural holes repeating in the same year against their

non-structural hole counterpart or the all-trial average(see panels A and B of Table 4). With the exception

of 2012, structural hole trials repeating within a year have larger enrollment. As mentioned earlier, trial size

determines trial cost. Hence, we can infer that large pharma companies as sponsors of clinical trials invest

in novelty through molecule combinations to presumably stay ahead of competitors.

Delays in recognition of novelty would imply lower repeats both within and across years for structural

holes compared to other trials and more self-sponsorship. The remarkable absence of this points to a potential

race between sponsors to stay ahead of the research curve, which we test through our second hypothesis in

the following section.
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Table 4 Year-wise Description of Structural Holes

Panel A: Within and Across Year Repeats for Structural Hole Trials

Year No. of Structural Holes with Average

Enrollment

Repeating in the same year

(Enrollment)

Repeating across years (Year of repetition, Enrollment)

(1) (2) (3) (4)

2010 21 (Average enrollment for column (3)

trials: 790; All trial average enroll-

ment: 555)

[AstraZeneca and Bristol-

Myers Squibb (1179), As-

traZeneca and Bristol-Myers

Squibb (400)]

Janssen Research(2010,469)→ Janssen Research (2011, 678); Astellas

Pharma Inc(2010,168)→ Astellas Pharma Inc (2011, 171); Merck Sharp(2010,

884)→ Merck Sharp (2012, 337); Boehringer Ingelheim and Eli Lilly (2010,

574)→ Boehringer Ingelheim and Eli Lilly (2012, 876)

2011 21 (Average enrollment for column (3)

trials: 924; All trial average enroll-

ment: 678)

[Novo Nordisk A/S (1663),

Novo Nordisk A/S (413)];

[Sanofi (807), Sanofi (811)]

AstraZeneca (2011,26)→AstraZeneca and Bristol-Myers Squibb (2012, 32);

Eli Lilly and Boehringer Ingelheim(2011, 1516)→Boehringer Ingelheim and

Eli Lilly (2012,1413);Eli Lilly and Boehringer Ingelheim(2011,1516)→Eli

Lilly (2013,392); Eli Lilly and Boehringer Ingelheim(2011,1516)→ Eli

Lilly(2014,68);Eli Lilly and Boehringer Ingelheim(2011,759)→Eli Lilly and

Boehringer Ingelheim (2014, 489)

2012 20 (Average enrollment for column (3)

trials: 353; All trial average enroll-

ment: 467)

[Sanofi(538), Sanofi (167)] Merck Sharp(2012, 751)→ Merck Sharp(2013, 402); Hoffmann-La

Roche(2012, 200)→ Hoffmann-La Roche(2013,7); Merck Sharp(2012, 307)→

Merck Sharp(2013, 642); AstraZeneca and Bristol-Myers Squibb(2012,32)→

AstraZeneca (2014, 1136)

2013 23 (Average enrollment for column (3)

trials: 2343; All trial average enroll-

ment: 730)

[AstraZeneca(365), Intarcia

Therapeutics(535)]; [Novo

Nordisk A/S(833), Novo

Nordisk A/S (7637)]

Novo Nordisk A/S(2013, 7637)→ Novo Nordisk A/S (2014, 721)

2014 13 (Average enrollment for column (3)

trials: 953;; All trial average enroll-

ment: 525)

[Sanofi(736), Sanofi(1170)] -

Panel B: Within and Across Year Repeats for Non-Structural Hole Trials

Year No. of Non- Structural Holes with Av-

erage Enrollment

Repeating in the same year

(Enrollment)

Repeating across years (Year of repetition, Enrollment)

(1) (2) (3) (4)

2010 19 (Average enrollment for column (3)

trials: 423; All trial average enroll-

ment: 555)

[Novo Nordisk A/S(465),

Novo Nordisk A/S(530)];

[Novo Nordisk A/S(460),

Novo Nordisk A/S(435),

Novo Nordisk A/S(460),

Novo Nordisk A/S(467),

Novo Nordisk A/S(143)]

Novo Nordisk A/S (460)→Novo Nordisk A/S (2012, 145)

2011 5 (Average enrollment for column (3)

trials: NA; All trial average enroll-

ment: 678)

No repeats No repeats

2012 18(Average enrollment for column (3)

trials: 362; All trial average enroll-

ment: 467)

[Novo Nordisk A/S (394),

Novo Nordisk A/S(272)];

[Novo Nordisk A/S (435),

Novo Nordisk A/S(346)]

Novo Nordisk (2012, 272)→Novo Nordisk A/S (2013, 274); Novo Nordisk

(2012, 272)→Novo Nordisk A/S (2013, 40), Novo Nordisk (2012, 435)→Novo

Nordisk A/S (2014, 420)

2013 9 (Average enrollment for column (3)

trials: NA; All trial average enroll-

ment: 730)

No repeats No repeats

2014 9 (Average enrollment for column (3)

trials: 878; All trial average enroll-

ment: 525)

[Merck Sharp and Dohme

Corp. and Pfizer (464),

Merck Sharp and Dohme

Corp. and Pfizer (1291)]

-

Source: Authors’ own calculations based on trial data from ClinicalTrials.gov
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4.4 Strength and Resilience of the Clinical Trial Research Network for Diabetes

Type II

We characterize our research network of clinical trials for diabetes type II using the concepts of “strength”

and “resilience” that we introduce in Hypothesis 2. Table 5 shows an interesting bimodality. Most of our

trials are either “Star Performers” or “Incremental Innovation”, as we have large positive entries only on

the diagonals of Panel A. Therefore, trials either display high-high evc for both trials and molecule variance

or they are low-low evc for both trial and molecule variance. Popular trials in our data have an element of

new learning possibilities, by combining various molecules with different information content. While this is

a good outcome as far as biasing of incentives are concerned, the less popular trials, which are the potential

sources of new information have very few structural hole possibilities.

Our data meets the criterion of “strength”, as for each year in the data, the number of Star Performers

outweigh the number of Low Hanging Fruit trials. However, we find that the number of Incremental Inno-

vation trials outnumber the number of Black Sheep trials consistently over the five year period, leading to

absence of “resilience” in the network. The presence of strength and absence of resilience is likely to indicate

a race on the part of sponsors to stay ahead of the research curve, as trials sponsored commonly in our

data have innovation potential. On the other hand, the presence of Incremental Innovation brings up the

possibility that more unique trials are not likely to be innovative.

Based on revenue data collected from statista.com13, we have summarized trial category-wise breakup

for the top ten pharmaceutical companies in terms of their future revenues in 2015-16 in Table 6. The

characteristic feature of network “strength” that we observe from 2010-14 continues to mark the industry

top players (Star Performers outnumber Low Hanging Fruits). While the “strength” of the network is a

uniform feature for these firms14, the pattern is not uniform for “resilience” of the network. Two of the

top ten performers (AstraZeneca and Sanofi) have sponsored an equal number or more of Black Sheep than

Incremental Innovation trials. However, since majority of these firms still lack “resilience” in the clinical

trial research network, we can place some confidence in our result that the diabetes drug discovery process

is incentivized either to take risks in popular trials (race to innovate) or to innovate incrementally through

less popular trials.

13Gullen and Plungis (2013) review this source as a reliable data source for 21 sectors with a focus on industry information

and consumer interests)
14These firms combined control 93.20 per cent of the market for diabetes drugs worldwide in 2016

(https://www.statista.com/statistics/309730/top-anti-diabetic-pharmaceutical-companies-by-market-share-worldwide/).
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Table 5 Category-wise Summary of Clinical Trials

Panel A: Percentage of Clinical Trials from 2010 (first entry) to 2014 (fifth entry)

Variance of Molecule evc

Evc trial High Low

High 47.5, 50.0, 52.6, 50.0, 45.8

(Star Performers)

2.5, 0.0, 0.0, 0.0, 12.5

(Low Hanging Fruits)

Low 5.0, 30.8, 0.0, 21.9, 8.3

(Black Sheep)

45.0, 19.2, 47.4, 28.1, 33.3

(Incremental Innovation)

Panel B: Percentage of Clinical Trials as Star Performers and Incremental Innovation

Year Star Performers Incremental Innovation Total

2010 47.5 45.0 92.5

2011 50.0 19.2 69.2

2012 52.6 47.4 100.0

2013 50.0 28.1 78.1

2014 37.5 25.0 62.5

Source: Authors’ own calculations

5 Discussion

An advantage of using the clinical trial research network as a framework for understanding the quality of

innovation in pharmaceuticals is that we can infer measures about innovation using revealed preference of

sponsors in trials. This avoids the indirect inference problem that is present in all citometric/bibliometric

studies in the innovation literature. Potential biases against novel innovation that Wang et al. (2017) warns

about in bibliometric analysis is not present in our investigation, at least for the diabetes clinical trials

network. The drawback is that we cannot draw general inferences across diseases using the clinical trial

data. One has to proceed disease by disease. Given differential incentives for research in different diseases,

we think our approach is appropriate. However, our future intention is to test that claim and to extend the

results for other diseases as well.
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Table 6 Categorization of Single Sponsor Trials

S.No. Sponsor

name (Rev-

enue in USD

million)

Star Per-

formers

Black Sheep Incremental

Innovation

Low Hanging

Fruit

Percent of

Total Single

Sponsor

Trials

1 Novo

Nordisk

(17,786)

10 2 24 0 27.48

2 Eli Lilly

(7,963)

9 1 7 0 12.98

3 Sanofi

(7,753)

9 2 2 0 9.92

4 Merck and

Co. (6,446)

14 1 3 0 13.74

5 Boehringer

Ingelheim

(5,516)

0 0 0 0 0.00

6 AstraZeneca

(3,687)

3 3 2 0 6.11

7 Johnson

and Johnson

(2,073)

6 0 0 1 5.34

8 Novartis

(1,207)

1 0 0 0 0.76

9 Takeda (995) 2 0 2 0 3.05

10 Bayer (635) 0 0 0 0 0.00

Total 54 9 40 1 104

Source: Authors’ own calculations together with revenue data taken from www.statista.com

21



6 Appendix A

Table 7 Codes Assigned to Molecules in Research Network

Molecule Code Molecule Code

Acarbose 1 Ipragliflozin(ASP1941) 34

Albiglutide 2 Linagliptin 35

Aleglitazar 3 Liraglutide 36

Alogliptin 4 Lixisenatide (AVE0010) 37

Anagliptin 5 LMF237 (Vildagliptin and Metformin) 38

Atorvastatin 6 Lobeglitazone (CKD-501) 39

Bexagliflozin 7 Metformin hydrochloride 40

Biguanide 8 MP513/Teneligliptin 41

Biphasic insulin aspart 9 Nateglinide 42

Canagliflozin/TA-7284 10 Omarigliptin 43

CJ-30001/CJ-30002(Metformin/voglibose) 11 Pioglitazone 44

Dapagliflozin 12 Prandial insulin 45

Dulaglutide(LY2189265) 13 Ranolazine 46

Ertugliflozin 14 Rosuvastatin 47

Evogliptin 15 Saxagliptin 48

Exenatide 16 Semaglutide 49

Fasiglifam 17 Sitagliptin 50

Gemigliptin(LS15-0444) 18 Sitagliptin phosphate 51

Glibenclamide 19 SPIL1033 52

Gliclazide 20 Sulphonylruea 53

Glimepiride 21 Taspoglutide 54

Glinide 22 Teneligliptin 55

Glipizide 23 Thiazolidinedione/TZD 56

Glucagon 24 Trelagliptin (SYR-472) 57

Gosogliptin 25 Vildagliptin 58

Insulin 26 Metformin 59

Insulin aspart 27 Empagliflozin 60

Insulin degludec 28 Simvastatin 61

Insulin detemir 29 Insulin glulisine 62

Insulin glargine(Lantus-HOE901-U100) 30 HOE901-U300-Insulin glargine new (Sanofi) 63

Insulin Lispro 31 Mylan’s Insulin glargine 64

Insulin NPH 32 Insulin glargine (Eli Lilly and Boehringer) 65

Insulin Peglispro/LY2605541 33 MK-1293- Insulin Glargine(Merck) 66

Source: Authors’ code assignment based on molecule data from ClinicalTrials.gov
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Table 8 Evc Scores and Classification of Structural Holes for 2014

Trial

No

Trial evc Trial Molecule evc Molecule Variance Structural

Hole

Trial Category

1 0.086 high 0.015 high 0.004 Yes Star Performer

2 0.042 high 0.000 low 0.017 Yes Star Performer

3 0.059 high 0.000 low 0.008 Yes Star Performer

4 0.086 high 0.008 low 0.004 Yes Star Performer

5 0.000 low 0.025 high 0.000 No Incremental Innovation

6 0.100 high 0.082 high 0.001 No Low Hanging Fruit

7 0.100 high 0.013 high 0.001 No Low Hanging Fruit

8 0.004 low 0.082 high 0.000 No Incremental Innovation

9 0.077 high 0.084 high 0.009 Yes Star Performer

10 0.042 high 0.001 low 0.018 Yes Star Performer

11 0.003 low 0.016 high 0.000 No Incremental Innovation

12 0.037 low 0.000 low 0.011 Yes Black Sheep

13 0.000 low 0.201 high 0.000 No Incremental Innovation

14 0.000 low 0.015 high 0.000 No Incremental Innovation

15 0.042 high 0.000 low 0.018 Yes Star Performer

16 0.043 high 0.014 high 0.016 Yes Star Performer

17 0.024 low 0.002 low 0.002 No Incremental Innovation

18 0.050 high 0.074 high 0.000 No Low Hanging Fruit

19 0.023 low 0.000 low 0.003 No Incremental Innovation

20 0.053 high 0.001 low 0.008 Yes Star Performer

21 0.045 high 0.020 high 0.012 Yes Star Performer

22 0.004 low 0.022 high 0.000 No Incremental Innovation

23 0.042 high 0.097 high 0.018 Yes Star Performer

24 0.038 low 0.000 low 0.008 Yes Black Sheep

- - - 0.012 low - - -

- - - 0.171 high - - -

- - - 0.014 high - - -

- - - 0.014 high - - -

- - - 0.019 high - - -

Source: Authors’ own calculations based on data from ClinicalTrials.gov
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7 Appendix B

Table 9 Multinomial Logistic Regression with Success Categories as Dependent Variable

Variables Coefficient P-value

Success Category 1: Trials Leading to Drug Discovery

Trial evc 5.961 0.485

Experience -0.0264 0.639

Enrollment 0.531 0.025

Series dummy 1.941 0.000

Year dummy

2 - 1.557 0.054

3 - 0.188 0.809

4 - 1.444 0.048

5 - 0.596 0.460

Success Category 2: Trials Not Linked to Drug Discovery

Trial evc - 4.099 0.644

Experience - 0.045 0.424

Enrollment 0.405 0.042

Series dummy - 0.756 0.188

Year dummy

2 -1.340 0.067

3 -0.007 0.992

4 -1.175 0.093

5 -1.077 0.197

Log likelihood = -137.198

Number of observations = 160

LR χ2(16) = 68.77

Prob > χ2 = 0.000

Pseudo R2 = 0.2004

Source: Authors’ own calculations with Success Category 3 as the base category.
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Table 10 Suest-based Hausman tests of IIA assumption (N=160)

χ2 df P> χ2

1 4.277 6 0.639

2 3.538 6 0.739

3 2.584 6 0.859

Ho: Odds are independent of other alternatives

Source: Authors’ own calculations

Table 11 Likelihood Ratio Tests for Independent Variables (N=160)

χ2 df P > χ2

Trial evc 1.396 2 0.497

Experience 0.645 2 0.724

Enrollment 6.735 2 0.034

Series Dummy 38.898 2 0.000

Year Dummy

2 4.868 2 0.088

3 0.103 2 0.950

4 4.636 2 0.098

5 1.699 2 0.428

Source: Authors’ own calculations
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